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Abstract 

This paper develops a mixed-integer linear programming (MILP) formulation to support the design and planning of agri-food supply 

chains (AFSCs). The model focuses on the strategic-tactical decisions of capacity definition, selection of processing technologies, 

and the establishment of product flows to achieve expected net present value (ENPV) maximisation. Within the model, AFSC-

specific characteristics are modelled as is the case of product perishability, flexible storage strategies, and reverse logistics 

operations. Supply and demand uncertainty is considered using a stochastic scenarios tree. The model is tested via the application 

of a case study from an existing sugar beet processing chain in The Netherlands. 
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1. Introduction 

Agribusiness encompasses all activities related to commercial 

farming. The USD 5 trillion sector was reported to represent 10 

per cent of consumer spending, provide 40 per cent of worldwide 

employment, and be responsible for 30 per cent of greenhouse-

gas emissions, as of 2015 (Goedde et al. 2015). In the European 

Union (EU), the sector encompasses EUR 117.4 and 137.9 

billion in imports and exports, respectively (European 

Commission 2017). Despite its considerable economic, social, 

and environmental impact, as well as recently growing 

productivity, major concerns regarding the sector’s future ability 

to provide food on a worldwide scale are on the rise (Goedde et 

al. 2015). 

These concerns stem from profound shifts in the existing 

technologies and the consumption habits of end customers. As 

a consequence of these changes, sector stakeholders are 

feeling an increasing pressure to adapt their current operating 

models to ones which better cater to the evolving needs of clients 

(Goedde et al. 2015). 

Within the major drivers for change, sustainability concerns, 

social concerns, and access to technology should be highlighted. 

Awareness for sustainability is currently on the rise, with a 

considerable portion of consumers beginning to adapt their 

consumption habits to reflect such concerns. It has been 

reported that consumers are currently willing to spend more on 

food of organic and sustainable sources, as a way of tackling 

both environmental sustainability and improving dietary quality. 

Apart from sustainability, social concerns are also becoming 

generalised. These concerns, which span from supporting 

locally-grown products to investing in local job creation, lead 

customers to preferring a closer proximity to farms and markets, 

as well as paying more attention to the origin of their products. 

Naturally, this pushes supply chains (SCs) towards a more local 

(decentralised) configuration and puts emphasis on product 

freshness and traceability. Finally, the access to ever-evolving 

technologies pushes changes and sector improvement at an 

increasing rate. With computation and better farming, harvesting, 

and storing capabilities, activities such as precision farming 

(Boettiger et al. 2017) are no longer a thing of the future, but 

rather something to which companies need to adapt to in order 

to remain competitive. 

The present paper performs an extensive review of the 

literature relating to the design and planning of AFSCs making 

use of quantitative methods and identifies clear knowledge gaps. 

The paper then aims to solve such gaps by proposing a new 

modelling approach focused on adapting existing SC models to 

the unique AFSC context, integrating uncertainty in both supply 

and demand, flexible storage strategies, as well as reverse 

logistics activities. This objective is attained via a MILP strategy 

aimed at maximising the ENPV of an AFSC with five echelons: 

suppliers, processors, distributors, retailers, and reprocessors. 

The model has a strategic-tactical breadth and focuses on 

defining technology and storage capacity for each facility, 

processing pathway selection, and definition of product flows 

between entities. 

The paper is structured as follows: Section 2 performs a 

systematic literature review of papers addressing the design and 

planning of AFSCs with quantitative methods. In Section 3, the 

major problem characteristics are introduced and briefly 

explained. In Section 4, the model formulation is thoroughly 

described and analysed. Section 5 highlights the details of the 

case study used to assess model performance. In Section 6, the 

results of the application of the case study are presented and 

discussed. Finally, Section 7 uses all previously gathered 

knowledge to arrive at conclusions and suggest future research 

directions. 

2. Literature review 

The number of papers focusing on the design and planning of 

AFSCs using quantitative models has been steadily increasing 

(Tsolakis et al. 2014), mostly due to the ever-increasing 

relevance of the topic on a worldwide scale. 

As mentioned, sustainability issues are now at the forefront 

of concerns, reason for which an increasing number of authors 

have focused their attention on environmental sustainability 

objectives and metrics. Although most authors addressing 

environmental sustainability do so while simultaneously pursuing 

economic goals, two publications have to be highlighted for their 

uniquely environmental-directed approach (Banasik et al. 2017; 

Pipatprapa et al. 2016). These works focus primarily on 

environmental performance assessment. 

Contrasting, a limited amount of work has been conducted 

on social sustainability, with only a very small number of authors 

addressing this concern. In light of this context, two papers need 

to be emphasised for their holistic approaches, in which all three 

sustainability pillars (economic, environmental, and social) are 
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addressed simultaneously (Allaoui et al. 2018; Izadikhah and 

Saen 2016). One additional paper focuses exclusively on the 

social pillar, addressing a distribution-equity problem in a food 

distribution network for the homeless (Fianu and Davis 2018). 

In terms of the decision levels addressed, a large 

prevalence of studies on the strategic and operational decision 

levels is verified in contrast to the attention given to tactical 

decisions. Among these decisions, distribution and location 

selection are among the most popular topics, while scheduling 

has seen very little focus (Sel et al. 2015; Bilgen and Çelebi 

2013). 

Different SC and food product characteristics have also 

been addressed by most authors, although with considerably 

differing prevalence. Among SC characteristics, a major focus is 

verified in centralised SCs, with 24 papers accounting solely for 

centralised SCs, against 5 which explicitly focus decentralised 

configurations. This is particularly concerning, as 

decentralisation strategies may be a solution for current 

environmental and social challenges. In fact, decentralisation 

allows for the reduction of transportation costs and emissions, 

and supports local food production and job creation (Bosona and 

Gebresenbet 2011; Accorsi et al. 2018). Apart from this, most 

studies have also addressed forward-oriented SCs exclusively, 

in which reverse logistics are not considered (25 out of the 34 

papers consider forward flows exclusively). With current 

sustainability and waste reduction concerns on the rise, it is 

expected that the role of reverse and closed-loop SCs will only 

increase. In light of this paradigm, the work of Banasik et al. 

(2017) must be highlighted, as it focuses on closing the loops in 

AFSCs with the use of multi-objective optimisation. 

As mentioned, food product characteristics are also being 

the focus of attention. Perishability is the most addressed food 

product characteristic, with 19 models accounting for it. Among 

these, different approaches can be encountered. In their work, 

Kanchanasuntorn and Techanitisawad (2006) assess the impact 

of perishability on costs, net profit, service level, and inventory 

level; Mejjaouli and Babiceanu (2018) study product shipping 

and rerouting while including the possibility of product spoilage 

during transportation; and Bilgen and Çelebi (2013) account for 

perishability by varying retailing pricing depending on product 

shelf-life. Food product quality is addressed in 6 papers, with the 

work of Ge et al. (2015) being a good example of an evaluation 

of SC agents with a strong quality control component. Apart from 

this, traceability is another important characteristic, as there is a 

clear trend in legislation to tighten quality control, often ensured 

with traceability to ensure accountability in malpractice. Finally, 

only one publication (Bilgen and Çelebi 2013) addressed product 

heterogeneity by proposing a model which accounts for multiple 

products with different production lead times and processes. 

Product heterogeneity is extremely relevant in AFSCs, as most 

suppliers and producers operate with a mix of products which 

should be accounted for. Clearly, there is a need for larger 

scientific focus on the subject. 

AFSCs possess a series of characteristics which render 

them unlike any other, reason for which specific tools need to be 

devised for these SCs. Among these, the high level of uncertainty 

verified in both supply and demand must be highlighted. 

Naturally, the inclusion of uncertainty modelling is an important 

trait when evaluating currently-proposed methodologies. The 

results from this analysis are not ideal. In fact, the number of 

papers with deterministic problems is far superior to that of 

papers addressing uncertainty. Disregarding uncertainty drives 

models away from reality and, consequently, limits their 

applicability. As far as the sources of uncertainty are considered, 

one paper (Shabani et al. 2012) created a model to account for 

input data uncertainty, predicting managerial data input to lack 

precise information. When accounting for supply and demand 

uncertainty, it is clear attention has been given to demand 

uncertainty, which is addressed twice more than supply 

uncertainty. It must be noted that one publication (Galal and El-

Kilany 2016) contributed with both demand and lead time 

uncertainty considerations. Apart from recognising which authors 

address AFSCs with uncertainty-encompassing approaches, the 

analysis of which methods have been used to model uncertainty 

is also interesting. Stochastic models are the more popular 

approach towards incorporating uncertainty in models, being 

three times more frequent than any other option in the literature 

sampled. Apart from stochastic models, fuzzy programming has 

been studied and argued as posing several benefits over 

stochastic approaches (Mohammed and Wang 2017). One 

paper on demand forecasting (Huber et al. 2017) makes use of 

an auto regressive integrated moving average (ARIMA) model, 

while Shabani et al. (2016) use interval data envelopment 

analysis (IDEA) to account for input data uncertainty. Finally, 

Fianu and Davis (2018) use a Markov decision process to 

integrate supply uncertainty in their food distribution-equity 

problem. 

As the literature review is focused on the application of 

quantitative methods to assist on the design and planning of 

AFSCs, recognising which methods have been chosen by 

authors is also important. Optimisation is clearly the most 

common, with more than half of all reviewed papers using an 

optimisation approach. It should be noted that a small set of 

papers make use of multiple methods. The usage of more than 

one approach is chosen by authors with two possible objectives: 

1) utilise two different methods to address different parts of the 

problem, as performed by Bilgen and Çelebi (2013) who utilise a 

hybrid optimisation and simulation approach to integrate 

production scheduling and distribution planning in a dairy SC; 2) 

utilise two different methods to solve the same problem, thus 

comparing their performances, as is done by Dellino et al. (2018), 

who utilise three different microforecasting methods in a fresh 

food SC. As AFSCs are vastly complex and entail a series of 

players who must work together to address current challenges, 

decision analysis is the second most used approach, as analytic 

hierarchy processes (AHP), analytic network processes (ANP), 

and data envelopment analysis (DEA) are powerful tools to 

support managerial decision making, as highlighted by the work 

of Allaoui et al. (2018) and Huber et al. (2017). Apart from 

optimisation and decision analysis, simulation is also frequently 

used. As AFSCs are extremely complex, optimisation methods 

can be limited by computing power. This is an important note, as 

simulation can provide a good solution to this limitation, lowering 

computing requirements considerably. Apart from the most used 

methods, heuristics and metaheuristics have been proposed by 

certain authors to decompose larger AFSC problems but are yet 

to be vastly studied. On the other hand, no papers were found 

adopting neural networks or queuing theory to an AFSC planning 

and design context. 

To support solving some of the knowledge gaps identified 

throughout the literature review, this paper develops a generic 

model to assist decision makers on the design and planning of 

AFSCs. The model achieves this goal by incorporating 

underexplored characteristics in the existing literature, such as 

reverse logistics, integration of both supply and demand 

uncertainty, as well as perishability and flexible storage 

strategies. 

3. Problem characteristics 

The model here described was designed to maximise the ENPV 

of an AFSC making use of MILP. The generic AFSC to which the 

model is applied consists of five echelons: suppliers, which 
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ensure the supply of raw materials; factories/processors, which 

use raw materials to manufacture products; warehouses/ 

distributors, which store products for posterior sale and 

distribute them to retailers; retailers, where products are sold to 

end consumers; and reprocessors, which receive wasted 

products from the remaining SC and produce other valuable 

products from them, which are then sold to end consumers. The 

different production processes are represented as technologies, 

which have associated production costs and bills of materials. To 

better mimic reality, product inventory is allowed in every echelon 

(in Cases B and C, please refer to Section 5), although storage 

capacity is higher in warehouses in comparison to other entities. 

Furthermore, all entities are allowed to ship their waste to 

reprocessors, thus effectively modelling reverse logistics and 

end-of-life product concerns, in line with priorities identified in 

Section 2. The general structure of the AFSC here discussed is 

highlighted in Figure 1. Although most authors assume 

centralised configurations (Kusumastuti et al. 2016), current 

food-miles concerns and local production awareness are paving 

the way to alternative (decentralised) set-ups. To account for 

such possibility, flows can be allowed between farmers and 

distributors/retailers. The problem can be described as follows: 

Given: 

• A set of products (raw materials, intermediate products, 

and final products); 

• A set of technologies, which convert raw materials to 

intermediate and final products, 

o Associated operating costs, material inputs, 

and outputs; 

• A set of entities (suppliers, processors, distributors, 

markets, and reprocessors), 

o Associated locations and transportation costs, 

o Associated technology capacity, 

o Associated storage capacity, 

o Associated demand; 

Select the: 

• Technology capacity to use in each entity in each time 

period; 

• Stored quantity in each entity in each time period; 

• Product flows between entities in each time period; 

Subject to: 

• Inventory constraints; 

• Technology constraints; 

• Storage constraints; 

• Transportation constraints; 

• Demand constraints; 

• Supply constraints; 

• Reprocessing constraints; 

• Uncertainty-encompassing constraints. 

To model supply and demand uncertainty, a stochastic 

scenarios tree was established. Each tree node is associated to 

a randomised occurrence probability and has associated supply 

and demand variation rates. In this specific case, each scenario 

gives rise to four different scenarios in the next time period, as 

denoted by Figure 2. 

4. Model formulation 

This section informs on the nomenclature of the various indices, 

sets, parameters, and variables used. Afterwards, it provides a 

detailed analysis of the objective function and all supporting 

equations and constraints. 

4.1. Indices 

v (and w) is for SC entities, p is for products, i is for processing 

and reprocessing technologies, t is for time periods, and s is for 

nodes in the stochastic scenarios tree. 

Figure 1 – General structure of the AFSC 

Figure 2 – Stochastic scenarios tree 
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4.2. Sets 

The set of entities is divided in several subsets, so that V = {Vsto 

U Vtra U Vsup U Vfac U Vwar U Vmar U Vrep U Vtec}; Vsto is entities 

with storage, Vtra is entities with product transformation, Vsup is 

suppliers, Vfac is factories, Vwar is warehouses, Vmar is markets, 

Vrep is reprocessors, and Vtec is entities with technology. For 

products, P = {Pwas U Pfin U Praw}; Pwas is waste, Pfin is final 

products, and Praw is raw materials. For technologies, I = {Ipro U 

Irep}; Ipro is processing technologies and Irep is reprocessing 

technologies. It should be noted that, for the particular case study 

discussed herein, processing and reprocessing entities coincide, 

as reprocessing technologies are installed in already existing 

factories. Product flows are represented by set F, and the set of 

nodes from the scenarios tree for each time period is represented 

by S, so that S = {(s,t): s ∈ K ∧ t ∈ T}, with K being the set of 

nodes and T the set of time periods. Q represents the set of 

predecessors of each node s, and Z is the set of two-stage 

predecessors of node s. 

4.3. Parameters 

qplupper is the maximum flow of materials allowed between two 

entities; qpllower is the minimum flow of materials allowed between 

two entities; target is the minimum allowed percentage of 

demand satisfaction; percent is the minimum allowed percentage 

of technology capacity usage; ir is the interest rate; sv is the 

salvage value of the investment performed; tr is the tax rate; 

fcimax is the maximum invested fixed capital; torv is the inventory 

turnover ratio in entity v; initialinvv is the initial storage investment 

for each entity with storage capacity; centityinitv is the initial 

storage capacity of each entity; cestomax
v,t is the maximum limit 

for the expansion of storage capacity in entity v in time period t; 

cestomin
v,t is the minimum limit for the expansion of storage 

capacity in entity v in time period t; nexstov is the maximum total 

limit for the expansion of storage capacity in entity v; cinvv is the 

cost of inventory in entity v per stored product unit; rates is the 

product demand variation rate for each node s; supratep,s is the 

supply variation rate for product p for each node s; dmkupper
p,v is 

the maximum value for the demand of product p in entity v in the 

first time period; initinvp,v is the initial inventory of product p in 

entity v; avaip,v is the availability of raw material p in entity v; 

fpprodp,v is the final price of product p in entity v; prmatp,v is the 

price of raw material p in entity v; qrmatp,p’ is the quantity of raw 

material p necessary to produce product p’; finprop,i is the final 

product p of each technology i; posspurp,v is the product p which 

entity v has the possibility to purchase; cdispp,v is the cost of 

disposal of product p in entity v; reprofp,v is the fraction of waste 

p which is possible to reprocess in entity v; imwfp,v is the fraction 

of product p which immediately turns into waste in entity v; 

lostsfp,v is the fraction of stored product p which is lost as waste 

in entity v; sdmisp,v is the fraction of product p which is lost due 

to supply and demand mismatch in entity v; cplinit
i,v is the initial 

capacity of technology i in entity v; inviniti,v is the initial investment 

in each technology i in entity v; operci,v is the operative cost of 

technology i in entity v for each produced unit; pconsi,p is the 

consumption of product p by technology i; prodti,p is the 

technology i which produces product p; ceplmax
i,v is the maximum 

limit for the expansion of technology i in entity v; ceplmin
i,v is the 

minimum limit for the expansion of technology i in entity v; nexpli,v 

is the maximum total limit for the expansion of technology i in 

entity v; alphapli,v,t is the variable investment in technology i in 

entity v; alphawhv,t is the variable investment in entity v with 

storage capacity; transpcv,v’ is the transportation cost for one unit 

between entities v and v’; linkv,v’ is the cost of establishing a 

transportation contract between entities v and v’; fiplv,v’ is the 

distance between entities v and v’; probs is the probability of 

occurrence of node s; and lvlv,s,t is the auxiliary parameter to 

establish the average inventory level at entity v in time period t. 

4.4. Variables 

4.1.1. Continuous variables 

PUv,w,p,s,t is the amount of product p purchased by entity v from 

entity w at time period t; Win
i,v,p,s,t is the amount of product p 

consumed by technology i at entity v in time period t; Wout
i,v,p,s,t is 

the amount of product p produced by technology i at entity v in 

time period t; Wout1
v,p,s,t is the amount of product p produced at 

farm v in time period t after supply variation is applied; Wout2
v,p,s,t 

is the amount of product p produced at farm v in time period t 

after waste fraction is applied; Pfarm
p,v,t is the amount of product 

p lost at farm v from supply and demand mismatch in time period 

t; SQp,v,t is the total amount of product p lost as waste in farm v 

in time period t; QPLv,w,p,s,t is the amount of product p shipped 

from entity v to entity w in time period t; INVv,p,s,t is the inventory 

level of product p kept at entity v in time period t; ILv,s,t is the 

average product inventory level kept at entity v in time period t; 

CPLi,v,t is the capacity of technology i available at entity v in time 

period t; CEPLi,v,t is the expansion of capacity of technology i in 

entity v undertaken in time period t; Csto
v,t is the storage capacity 

of entity v in time period t; CEsto
v,t is the expansion of storage 

capacity of entity v undertaken in time period t; CSert is the 

customer service level in time period t; Demp,v,s,t is the demand 

for product p in entity v in time period t; UnDemp,v,s,t is the unmet 

demand for product p in entity v in time period t; ENPVs is the 

ENPV corresponding to node s; SAv,p,s,t is the sales value of 

product p at market v in time period t; CFs,t is the cash flow in 

time period t; ENEs,t is the expected net earnings (ENEs) in time 

period t; FTDCt is the fraction of the total depreciation capital, 

which must be paid in time period t; FCI is the fixed capital 

investment; DEPt is the capital depreciation factor in time period 

t. 

4.4.2. Binary variables 

XPLi,v,t equals 1 if the expansion of capacity of technology i at 

entity v occurs in time period t; Xsto
v,t equals 1 if the expansion of 

storage capacity at entity v occurs in time period t; YPLv,w,t equals 

1 if the flow between entities v and w is established in time period 

t. 

4.5. Objective function and supporting equations 

Equation 1 corresponds to the objective of ENPV maximisation, 

where the ENPV is expressed as a function of the cash flows 

(CFs,t) of each time period (and scenario) and corresponding 

interest rate (ir). This approach was first proposed by Brealey 

(Brealey et al. 2014). 

𝑚𝑎𝑥 𝐸𝑁𝑃𝑉 = ∑
𝐶𝐹𝑠,𝑡

(1 + 𝑖𝑟)𝑡

𝑡∈𝑇

 

 ( 1 ) 

Equation 2 allows for the calculation of the cash flow 

parameter for each time period featured on Equation 1. The CF 

is determined as the difference between the Expected NEs 

(ENEs) in time period t and the fraction of the total depreciable 

capital which must be paid in said time period. However, the 

equation for the last modelled time period also encompasses the 

recoverable fraction of the fixed investment via its salvage value 

(sv). 
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{
                      𝐶𝐹𝑠,𝑡 = 𝐸𝑁𝐸𝑠,𝑡 − 𝐹𝑇𝐷𝐶𝑡             𝑡 = 1, … , 𝑡𝑓𝑖𝑛𝑎𝑙 − 1

𝐶𝐹𝑠,𝑡 = 𝐸𝑁𝐸𝑠,𝑡 − 𝐹𝑇𝐷𝐶𝑡 − 𝑠𝑣 × 𝐹𝐶𝐼        𝑡 = 𝑡𝑓𝑖𝑛𝑎𝑙
 

 ( 2 ) 

Similarly, the ENE parameter required in Equation 2 must 

also be calculated. Equation 3 makes this calculation by 

deducting all costs from the total income. The total income is 

calculated by the product of units sold and respective price in 

each of the markets. In term, the following costs are considered: 

cost of raw materials, determined by multiplying the number of 

units produced by the corresponding costs of the bill of materials; 

cost of operating technologies, determined by multiplying the 

cost of production of a single unit by technology i by the number 

of units it produces; cost of inventory, determined by the product 

of the cost of storage of a single unit by the average storage level 

at any given entity; cost of transportation, determined by 

estimating the total amount of transported products, which 

corresponds to the sum of products sent by entity v to other 

entities and the products bought by entity v. This total is then 

multiplied by the cost of transportation of a single product per 

distance unit and the total distance between each of the entities 

between which transportation is carried out at any time period; 

cost of waste disposal, determined by calculating the total 

amount of waste which is not prone to being reprocessed and 

multiplying it by the disposal cost per product unit. The waste 

amount is the difference between the influx of products to 

reprocessors and the sales made by them, as the resulting 

amount corresponds to the waste which was not reprocessed. 

Apart from the five parameters listed above, a final term in 

Equation 3 accounts for the depreciation of the fixed capital, to 

which the tax rate tr is applied. Equation 4 accounts for the 

calculation of this depreciation (DEPt), which was deemed linear. 

𝐸𝑁𝐸𝑠,𝑡 = (1 − 𝑖𝑟) × [ ∑ (𝑓𝑝𝑝𝑟𝑜𝑑𝑝,𝑣 × 𝑆𝐴𝑣,𝑝,𝑠,𝑡)
(𝑣,𝑝)∈𝑚𝑎𝑟(𝑣)

− ∑ (𝑝𝑟𝑚𝑎𝑡𝑝,𝑣 × 𝑃𝑈𝑣,𝑤,𝑝,𝑠,𝑡)
(𝑣,𝑤,𝑝)∈𝑠𝑢𝑝(𝑤)

− ∑ (𝑜𝑝𝑒𝑟𝑐𝑖,𝑣 × 𝑊𝑜𝑢𝑡
𝑖,𝑣,𝑝,𝑠,𝑡)

(𝑖,𝑣,𝑝)∈𝑇𝑟𝑎𝑛𝑠(𝑣)

− ∑ (𝑐𝑖𝑛𝑣𝑣 × 𝐼𝐿𝑣,𝑠,𝑡)
(𝑣)∈𝑠𝑡𝑜(𝑣)

− (𝑡𝑟𝑎𝑛𝑠𝑝𝑐𝑣,𝑤 × (𝑞𝑝𝑙𝑣,𝑤,𝑝,𝑠,𝑡 × 𝑃𝑈𝑤,𝑣,𝑝,𝑠,𝑡)

× 𝑓𝑖𝑝𝑙𝑣,𝑤)

− ∑ ((𝑞𝑝𝑙𝑣,𝑤,𝑝,𝑠,𝑡 − 𝑆𝐴𝑤,𝑝,𝑠,𝑡)
(𝑣,𝑤,𝑝)∈𝑟𝑒𝑝𝑟𝑜(𝑤)

× 𝑐𝑑𝑖𝑠𝑝𝑝,𝑣,𝑡)] + (𝑖𝑟 × 𝐷𝐸𝑃𝑡) 

 ( 3 ) 

𝐷𝐸𝑃𝑡 =
(1 − 𝑠𝑣) × 𝐹𝐶𝐼

𝑡
 

 ( 4 ) 

As mentioned, the cash flow calculation considers the 

fraction of the depreciable capital that must be paid, in time 

period t, for which such fraction must also be calculated. For this 

reason, the total fixed capital was simply divided equally by all 

time periods, as denoted by Equation 5. 

𝐹𝑇𝐷𝐶𝑡 =
𝐹𝐶𝐼

𝑡
 

 ( 5 ) 

Finally, to obtain the total fixed capital, Equation 6 

encompasses the following investment needs: facility 

investment, which is translated by the storage capacity of each 

entity and the corresponding cost per capacity unit, as well as 

the eventual investments in storage capacity expansion and 

corresponding variable costs; technology investment, which is 

translated by the initial capacity of each technology and 

corresponding cost per capacity unit, as well as the eventual 

investments in technology capacity expansion and 

corresponding variable costs; transportation investment, which 

corresponds to the costs of celebrating transportation 

agreements with transportation companies for each of the 

necessary routes. Note the importance of the binary variable 

YPLv,w,t, which ensures only effective routes are considered. 

𝐹𝐶𝐼 = ∑ (𝑐𝑒𝑛𝑡𝑖𝑡𝑦𝑖𝑛𝑖𝑡𝑣 × 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑛𝑣𝑣)

𝑣∈𝑠𝑡𝑜(𝑣)

+ ∑ (𝑎𝑙𝑝ℎ𝑎𝑤ℎ𝑣,𝑡 × 𝐶𝐸𝑠𝑡𝑜
𝑣,𝑡)

𝑣∈𝑠𝑡𝑜(𝑣)

+ ∑ (𝑐𝑝𝑙𝑖𝑛𝑖𝑡
𝑖,𝑣

× 𝑖𝑛𝑣𝑖𝑛𝑖𝑡𝑖,𝑣)

𝑣∈𝑡𝑒𝑐(𝑣)

+ ∑ (𝑎𝑙𝑝ℎ𝑎𝑝𝑙𝑖,𝑣,𝑡 × 𝐶𝐸𝑃𝐿𝑖,𝑣,𝑡)

𝑣∈𝑡𝑒𝑐(𝑣)

+ ∑(𝑙𝑖𝑛𝑘𝑣,𝑤 × 𝑌𝑃𝐿𝑣,𝑤,𝑡)

𝑣,𝑤

 

 ( 6 ) 

4.6. Constraints 

This section describes the constraints used to define the 

problem. 

Equation 7 corresponds to a continuity condition which 

ensures there is coherence between the material inflows and 

outflows in entities where inventory is not allowed. The equation 

forces the total material inflow to equal the total material outflow. 

For this, the total inflow includes materials purchased (PUv,w,p,s,t), 

materials produced (Wout
i,v,p,s,t), and materials received from 

other entities (QPLw,v,p,s,t). The total outflow includes materials 

sent to other entities (QPLv,w,p,s,t), material consumption 

(Win
i,v,p,s,t), and material turned into waste. Two sources of waste 

are considered: the first corresponds to a fraction (imwfp,v) of the 

manufactured products (Wout
i,v,p,s,t) which does not meet the 

required quality standards upon production; the second 

corresponds to a fraction (lostsfp,v) of the average inventory level 

(ILv,s,t) which becomes improper for consumption due to product 

perishability. 

∑ 𝑄𝑃𝐿𝑤,𝑣,𝑝,𝑠,𝑡

𝑤∈𝑓𝑙𝑜𝑤(𝑤,𝑣)

+ ∑ 𝑃𝑈𝑣,𝑤,𝑝,𝑠,𝑡

𝑤

+ ∑ 𝑊𝑜𝑢𝑡
𝑖,𝑣,𝑝,𝑠,𝑡

𝑖

= ∑ 𝑄𝑃𝐿𝑣,𝑤,𝑝,𝑠,𝑡

𝑣∈𝑚𝑎𝑟(𝑣)

+ ∑ 𝑊𝑖𝑛
𝑖,𝑣,𝑝,𝑠,𝑡

𝑖

+ ∑(𝑊𝑜𝑢𝑡
𝑖,𝑣,𝑝,𝑠,𝑡 × 𝑖𝑚𝑤𝑓𝑝,𝑣)

𝑖

+ ∑(𝐼𝐿𝑣.𝑠.𝑡 × 𝑙𝑜𝑠𝑡𝑠𝑓𝑝,𝑣)

𝑤

     ∀𝑝 ∈ 𝑃 ∧ 𝑣 ∉ 𝑉𝑠𝑡𝑜 ∧ (𝑠, 𝑡)

∈ 𝑆 

 ( 7 ) 

Equations 8 and 9 follow the same rationale behind 

Equation 7 but are in turn applied to entities where inventory is 

allowed. As such, apart from all other terms already seen in 

Equation 7, the inventory levels in time period t (INVv,p,s,t) and t-

1 (INVv,p,s,t-1) are featured. Equation 8 uses the initial inventory 

(initinvp,v) and is thus applied to the first modelled time period. 

For all remaining time periods, Equation 8 is adapted into 

Equation 9. 
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𝑖𝑛𝑖𝑡𝑖𝑛𝑣𝑝,𝑣 + ∑ 𝑄𝑃𝐿𝑤,𝑣,𝑝,𝑠,𝑡

𝑣∈𝑓𝑎𝑐(𝑣)

+ ∑ 𝑃𝑈𝑣,𝑤,𝑝,𝑠,𝑡

𝑤

+ ∑ 𝑊𝑜𝑢𝑡
𝑖,𝑣,𝑝,𝑠,𝑡

𝑖

= ∑ 𝑄𝑃𝐿𝑣,𝑤,𝑝,𝑠,𝑡

𝑣∈𝑚𝑎𝑟(𝑣)

+ 𝐼𝑁𝑉𝑣,𝑝,𝑠,𝑡

+ ∑ 𝑊𝑖𝑛
𝑖,𝑣,𝑝,𝑠,𝑡

𝑖

+ ∑(𝑊𝑜𝑢𝑡
𝑖,𝑣,𝑝,𝑠,𝑡 × 𝑖𝑚𝑤𝑓𝑝,𝑣)

𝑖

+ ∑(𝐼𝐿𝑣.𝑠.𝑡 × 𝑙𝑜𝑠𝑡𝑠𝑓𝑝,𝑣)

𝑤

      ∀𝑝 ∈ 𝑃 ∧ 𝑣

∈ 𝑉𝑠𝑡𝑜 ∧ 𝑠 ∈ 𝑆 ∧ 𝑡 = 1 

 ( 8 ) 

𝐼𝑁𝑉𝑣,𝑝,𝑠,𝑡−1 + ∑ 𝑄𝑃𝐿𝑤,𝑣,𝑝,𝑠,𝑡

𝑣∈𝑓𝑎𝑐(𝑣)

+ ∑ 𝑃𝑈𝑣,𝑤,𝑝,𝑠,𝑡

𝑤

+ ∑ 𝑊𝑜𝑢𝑡
𝑖,𝑣,𝑝,𝑠,𝑡

𝑖

= ∑ 𝑄𝑃𝐿𝑣,𝑤,𝑝,𝑠,𝑡

𝑣∈𝑚𝑎𝑟(𝑣)

+ 𝐼𝑁𝑉𝑣,𝑝,𝑠,𝑡

+ ∑ 𝑊𝑖𝑛
𝑖,𝑣,𝑝,𝑠,𝑡

𝑖

+ ∑(𝑊𝑜𝑢𝑡
𝑖,𝑣,𝑝,𝑠,𝑡 × 𝑖𝑚𝑤𝑓𝑝,𝑣)

𝑖

+ ∑(𝐼𝐿𝑣.𝑠.𝑡 × 𝑙𝑜𝑠𝑡𝑠𝑓𝑝,𝑣)

𝑤

      ∀𝑝 ∈ 𝑃 ∧ 𝑣

∈ 𝑉𝑠𝑡𝑜 ∧ 𝑠 ∈ 𝑆 ∧ 𝑡 = 1 

 ( 9 ) 

Equations 10 and 11 focus on establishing the average 

inventory level at each entity. Equation 10 ensures that the 

average inventory level at entity v does not exceed a certain 

reasonable fraction of the total storage capacity of the entity, via 

the parameter lvlv,s,t. On the other hand, Equation 11 forces the 

average inventory level to respect a reasonable inventory 

turnover ratio (torv) to ensure appropriate inventory 

management, while respecting the limit set by Equation 10. 

𝑙𝑣𝑙𝑣,𝑠,𝑡 × 𝐼𝐿𝑣,𝑠,𝑡 ≤ 𝐶𝑠𝑡𝑜
𝑣,𝑡       ∀𝑣 ∈ 𝑉𝑠𝑡𝑜 ∧ (𝑠, 𝑡) ∈ 𝑆 

 ( 10 ) 

𝐼𝐿𝑣,𝑠,𝑡 =
∑ 𝑄𝑃𝐿𝑣,𝑤,𝑝,𝑠,𝑡(𝑤,𝑝)∈𝑓𝑙𝑜𝑤(𝑣,𝑤)

𝑡𝑜𝑟𝑣
      ∀𝑣 ∈ 𝑉𝑠𝑡𝑜 ∧ (𝑠, 𝑡) ∈ 𝑆 

 ( 11 ) 

Equations 12 and 13 focus on purchases and sales, 

respectively. Equation 12 ensures entity v can only purchase 

available units from entity w (it should be noted that the available 

quantity – avaip,v – does not vary with the time period, as supply 

variation is achieved via the strategy explained at a later stage). 

Equation 13 forces all sales from one entity to another to be 

considered as a flow of products to be transported between the 

two, to ensure appropriate transportation costs are considered. 

∑ 𝑃𝑈𝑤,𝑣,𝑝,𝑠,𝑡

𝑤

≤ 𝑎𝑣𝑎𝑖𝑝,𝑣      ∀𝑣 ∈ 𝑉 ∧ 𝑝 ∈ 𝑃𝑟𝑎𝑤 ∧ (𝑠, 𝑡) ∈ 𝑆 

 ( 12 ) 

𝑆𝐴𝑣,𝑝,𝑠,𝑡 = ∑ 𝑄𝑃𝐿𝑤,𝑣,𝑝,𝑠,𝑡

𝑤∈𝑓𝑙𝑜𝑤(𝑤,𝑣)

      ∀𝑣 ∈ 𝑉 ∧ 𝑝 ∈ 𝑃 ∧ (𝑠, 𝑡) ∈ 𝑆 

 ( 13 ) 

Equation 14 ensures coherence between the production 

undertaken by technology i in entity v (Wout
i,v,p,s,t) and its 

corresponding capacity (CPLi,v,t), by forcing production not to 

overcome the maximum installed capacity. 

∑ 𝑊𝑜𝑢𝑡
𝑖,𝑣,𝑝,𝑠,𝑡

𝑝∈𝑓𝑖𝑛(𝑝)

≤ 𝐶𝑃𝐿𝑖,𝑣,𝑡       ∀𝑖 ∈ 𝐼 ∧ 𝑣 ∈ 𝑉𝑡𝑟𝑎 ∧ 𝑝 ∈ 𝑃 ∧ (𝑠, 𝑡)

∈ 𝑆 
 ( 14 ) 

Equation 15 functions similarly but instead addresses 

product consumption (Win
i,v,p,s,t), by forcing product consumption 

by technology i not to exceed the total installed capacity. 

Meanwhile, Equation 16 defines Win
i,v,p,s,t as the product between 

the production flow (Wout
i,v,p,s,t) and the corresponding raw 

materials necessary to produce each of the manufactured 

products (qrmatp,p’). 

𝐶𝑃𝐿𝑖,𝑣,𝑡 ≥ ∑ 𝑊𝑖𝑛
𝑖,𝑣,𝑝,𝑠,𝑡

𝑖∈𝑖𝑝𝑟𝑜(𝑖)

      ∀𝑖 ∈ 𝐼 ∧ 𝑣 ∈ 𝑉𝑡𝑟𝑎 ∧ 𝑡 ∈ 𝑇 

 ( 15 ) 

𝑊𝑖𝑛
𝑖,𝑣,𝑝,𝑠,𝑡 = ∑ (𝑊𝑜𝑢𝑡

𝑖,𝑣,𝑝,𝑠,𝑡 × 𝑞𝑟𝑚𝑎𝑡𝑢,𝑝)

𝑝∈𝑓𝑖𝑛(𝑝)

      ∀𝑖 ∈ 𝐼 ∧ 𝑣

∈ 𝑉𝑡𝑟𝑎 ∧ 𝑝 ∈ 𝑃 ∧ (𝑠, 𝑡) ∈ 𝑆 

    ( 16 ) 

 

Equation 17 allows for a minimum acceptable utilisation 

capacity of technology i at entity v to be defined for each time 

period (percent), by ensuring the product between percent and 

the technology’s capacity (CPLi,v,t) does not surpass the 

produced flow. 

 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡 × 𝐶𝑃𝐿𝑖,𝑣,𝑡 ≤ ∑ 𝑊𝑜𝑢𝑡
𝑖,𝑣,𝑝,𝑠,𝑡

𝑝∈𝑓𝑖𝑛(𝑝)

      ∀𝑖 ∈ 𝐼 ∧ 𝑣 ∈ 𝑉𝑡𝑟𝑎 ∧ 𝑡

∈ 𝑇 

 ( 17 ) 

Equations 18 and 19 establish the capacity (CPLi,v,t) of 

technology i in entity v for any given time period t. Equation 18 

defines such capacity as the capacity installed in the last 

modelled time period plus an eventual capacity expansion 

(CEPLi,v,t) registered in the present time period. Equation 19 

adapts Equation 18 to the first time period by making use of the 

initial capacity (cplinit
i,v). 

𝐶𝑃𝐿𝑖,𝑣,𝑡 = 𝐶𝑃𝐿𝑖,𝑣,𝑡−1 + 𝐶𝐸𝑃𝐿𝑖,𝑣,𝑡       ∀𝑖 ∈ 𝐼 ∧ 𝑣 ∈ 𝑉𝑡𝑟𝑎 ∧ 𝑡 ∈ 𝑇 

 ( 18 ) 

𝐶𝑃𝐿𝑖,𝑣,𝑡 = 𝑐𝑝𝑙𝑖𝑛𝑖𝑡
𝑖,𝑣

+ 𝐶𝐸𝑃𝐿𝑖,𝑣,𝑡      ∀𝑖 ∈ 𝐼 ∧ 𝑣 ∈ 𝑉𝑡𝑟𝑎 ∧ 𝑡 ∈ 𝑇 

               ( 19 ) 

As technology capacity expansions (CEPLi,v,t) are important 

inputs for Equations 18 and 19, these must be well defined. The 

trio of Equations 20, 21, and 22 define the maximum limit for 

technology capacity expansion in any time period (ceplmax
i,v), the 

minimum limit for technology capacity expansion in any time 

period (ceplmin
i,v), and the maximum sum of all technology 

capacity expansions which occur during the modelled time span 

(nexpli,v), respectively. As such, these equations ensure 

technology capacity expansions stay within reasonable bounds 

(Equations 20 and 21), and that total facility capacity dictates the 

maximum technology capacity installed (Equation 22). 

𝐶𝐸𝑃𝐿𝑖,𝑣,𝑡 ≤ 𝑐𝑒𝑝𝑙𝑚𝑎𝑥
𝑖,𝑣

      ∀𝑖 ∈ 𝐼 ∧ 𝑣 ∈ 𝑉𝑡𝑟𝑎 ∧ 𝑡 ∈ 𝑇 

 ( 20 ) 

𝐶𝐸𝑃𝐿𝑖,𝑣,𝑡 ≥ 𝑐𝑒𝑝𝑙𝑚𝑖𝑛
𝑖,𝑣

      ∀𝑖 ∈ 𝐼 ∧ 𝑣 ∈ 𝑉𝑡𝑟𝑎 ∧ 𝑡 ∈ 𝑇 

 ( 21 ) 

∑ 𝐶𝐸𝑃𝐿𝑖,𝑣,𝑡

𝑡

≤ 𝑛𝑒𝑥𝑝𝑙𝑖,𝑣      ∀𝑖 ∈ 𝐼 ∧ 𝑣 ∈ 𝑉𝑡𝑟𝑎 ∧ 𝑡 ∈ 𝑇 

               ( 22 ) 

Equation 23 is applied for the first time period and defines 

the storage capacity in entity v (Csto
v,t) as the initial storage 

capacity for that same entity (centityinitv) to which an eventual 

storage capacity expansion in time t (CEsto
v,t) is added. Equation 
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24 functions similarly to Equation 23 but is instead applied to all 

other time periods, as the initial storage capacity is replaced by 

the storage capacity in the previous time period (Csto
v,t-1). 

Equations 25 and 26 ensure that storage capacity expansions 

stay within maximum (cestomax
v,t) and minimum (cestomin

v,t) 

realistic boundaries, respectively. Equation 27 ensures the sum 

of all storage capacity expansions undertaken during the 

program runtime does not surpass a realistic limit (nexstov). 

𝐶𝑠𝑡𝑜
𝑣,𝑡 = 𝑐𝑒𝑛𝑡𝑖𝑡𝑦𝑖𝑛𝑖𝑡𝑣 + 𝐶𝐸𝑠𝑡𝑜

𝑣,𝑡       ∀𝑣 ∈ 𝑉𝑠𝑡𝑜 ∧ 𝑡 ∈ 𝑇 
 ( 23 ) 

𝐶𝑠𝑡𝑜
𝑣,𝑡 = 𝐶𝑠𝑡𝑜

𝑣,𝑡−1 + 𝐶𝐸𝑠𝑡𝑜
𝑣,𝑡      ∀𝑣 ∈ 𝑉𝑠𝑡𝑜 ∧ 𝑡 ∈ 𝑇 

 ( 24 ) 

𝐶𝐸𝑠𝑡𝑜
𝑣,𝑡 ≤ 𝑐𝑒𝑠𝑡𝑜𝑚𝑎𝑥

𝑣,𝑡       ∀𝑣 ∈ 𝑉𝑠𝑡𝑜 ∧ 𝑡 ∈ 𝑇 
 ( 25 ) 

𝐶𝐸𝑠𝑡𝑜
𝑣,𝑡 ≥ 𝑐𝑒𝑠𝑡𝑜𝑚𝑖𝑛

𝑣,𝑡       ∀𝑣 ∈ 𝑉𝑠𝑡𝑜 ∧ 𝑡 ∈ 𝑇 
 ( 26 ) 

∑ 𝐶𝐸𝑠𝑡𝑜
𝑣,𝑡

𝑡

≤ 𝑛𝑒𝑥𝑠𝑡𝑜𝑣      ∀𝑣 ∈ 𝑉𝑠𝑡𝑜 ∧ 𝑡 ∈ 𝑇 

                ( 27 ) 

Equation 28 ensures coherence between storage capacity 

at entity v in time period t (Csto
v,t) and the inventory level for each 

product p in the same entity and time period (INVv,p,s,t), by forcing 

the sum of all stored products never to exceed total storage 

capacity. 

∑ 𝐼𝑁𝑉𝑣,𝑝,𝑠,𝑡

𝑝

≤ 𝐶𝑠𝑡𝑜
𝑣,𝑡       ∀𝑣 ∈ 𝑉𝑠𝑡𝑜 ∧ 𝑝 ∈ 𝑃 ∧ (𝑠, 𝑡) ∈ 𝑆 

 ( 28 ) 

Equation 29 forces the total flow to never surpass the 

maximum acceptable limit for product flow (qplupper), and 

Equation 30 ensures the same flow is never inferior to a minimum 

value (qpllower). 

∑(𝑄𝑃𝐿𝑣,𝑤,𝑝,𝑠,𝑡 + 𝑃𝑈𝑣,𝑤,𝑝,𝑠,𝑡)

𝑝

≤ 𝑞𝑝𝑙𝑢𝑝𝑝𝑒𝑟 × 𝑌𝑃𝐿𝑣,𝑤,𝑡      ∀(𝑣, 𝑤) ∈ 𝐹 ∧ 𝑝

∈ 𝑃 ∧ (𝑠, 𝑡) ∈ 𝑆 

 ( 29 ) 

∑(𝑄𝑃𝐿𝑣,𝑤,𝑝,𝑠,𝑡 + 𝑃𝑈𝑣,𝑤,𝑝,𝑠,𝑡)

𝑝

≥ 𝑞𝑝𝑙𝑙𝑜𝑤𝑒𝑟 × 𝑌𝑃𝐿𝑣,𝑤,𝑡      ∀(𝑣, 𝑤) ∈ 𝐹 ∧ 𝑝

∈ 𝑃 ∧ (𝑠, 𝑡) ∈ 𝑆 

 ( 30 ) 

Equations 31 and 32 establish the connection between 

demand and sales. Equation 31 forces sales (SAv,p,s,t) never to 

surpass demand (Demv,p,s,t), while Equation 32 ensures sales 

remain above a minimum acceptable percentage of demand 

satisfaction (target). 

𝑆𝐴𝑣,𝑝,𝑠,𝑡 ≤ 𝐷𝑒𝑚𝑣,𝑝,𝑠,𝑡       ∀𝑣 ∈ 𝑉 ∧ 𝑝 ∈ 𝑃 ∧ (𝑠, 𝑡) ∈ 𝑆 

 ( 31 ) 

𝑆𝐴𝑣,𝑝,𝑠,𝑡 ≥ 𝐷𝑒𝑚𝑣,𝑝,𝑠,𝑡 × 𝑡𝑎𝑟𝑔𝑒𝑡      ∀𝑣 ∈ 𝑉 ∧ 𝑝 ∈ 𝑃 ∧ (𝑠, 𝑡) ∈ 𝑆 

 ( 32 ) 

Equation 33 defines the demand for product p at entity v in 

the first time period as equal to a predetermined value 

(dmkupper
p,v), as this starting point is important to then address 

demand uncertainty throughout the modelled time span. Having 

established the stochastic scenarios tree (Figure 2), Equation 34 

defines demand for product p in entity v in time period t as the 

demand in the previous time period, to which rates for the current 

tree node is applied. As such, by selecting a tree node, demand 

uncertainty is effectively mimicked. 

𝐷𝑒𝑚𝑝,𝑣,𝑠,𝑡 = 𝑑𝑚𝑘𝑢𝑝𝑝𝑒𝑟
𝑝,𝑣      ∀𝑣 ∈ 𝑉 ∧ 𝑝 ∈ 𝑃 ∧ (𝑠, 𝑡) ∈ 𝑆 

 ( 33 ) 

𝐷𝑒𝑚𝑝,𝑣,𝑠,𝑡 = 𝐷𝑒𝑚𝑝,𝑣,𝑠,𝑡−1 × 𝑟𝑎𝑡𝑒𝑠      ∀𝑣 ∈ 𝑉 ∧ 𝑝 ∈ 𝑃 ∧ (𝑠, 𝑡) ∈ 𝑆 

 ( 34 ) 

In the literature review, supply uncertainty has been 

pinpointed as one of the areas in which research is lacking. 

AFSCs frequently show mismatches between supply and 

demand due to high lead times. To mimic this condition, the 

supply is a theoretical value (for instance, the total production 

from the arable land of a farm), which never truly corresponds to 

the effective supply that comes from it, due to inevitable loses. 

From this value are then taken fractions corresponding to the 

various sources of loss and uncertainty that affect AFSCs, as 

highlighted by a set of constraints. Equation 35 serves as the 

starting point for supply modelling and, as mentioned, considers 

the maximum capacity of production of p in farm v (excluding all 

loses) as the maximum theoretical availability of p (avaip,v). The 

equation defines variable Wout1
v,p,s,t as the quantity of product p 

which is effectively produced by deducting supratep,s from the 

theoretical availability. The parameter supratep,s functions 

similarly to rates, as it is also an assigned value to each node in 

the stochastic scenarios tree, but rather corresponds to the 

variation in supply for each product p. 

∑ Wout1
v,p,s,t

p∈raw(p)

= ∑ (avaip,v × supratep,s)

p∈raw(p)

      ∀v ∈ Vsup ∧ p

∈ Praw ∧ (s, t) ∈ S 
                      ( 35 ) 

Equation 35 accounts for product growth variability and 

gives the amount of product which is prone to being harvested. 

Post-harvesting loses are accounted for as an average loss for 

the entire time period, that is, fraction imwfp,v (the immediate 

fraction of product p which turns to waste in entity v). Equation 

36 defines auxiliary variable Wout2
v,p,s,t as the total product p 

produced in farm v after the harvesting operations. 

∑ 𝑊𝑜𝑢𝑡2
𝑣,𝑝,𝑠,𝑡

𝑝∈𝑟𝑎𝑤(𝑝)

= ∑ (𝑊𝑜𝑢𝑡1
𝑣,𝑝,𝑠,𝑡 × (1 − 𝑖𝑚𝑤𝑓𝑝,𝑣))

𝑝∈𝑟𝑎𝑤(𝑝)

      ∀𝑣

∈ 𝑉𝑠𝑢𝑝 ∧ 𝑝 ∈ 𝑃𝑟𝑎𝑤 ∧ (𝑠, 𝑡) ∈ 𝑆 

 ( 36 ) 

Equation 37 defines variable Pfarm
p,v,t as the total product p 

which is turned to waste in farm v in time period t due to 

excessive supply. This variable is calculated as a percentage of 

the total product after harvest (Wout2
v,p,s,t), as an average 

assumed percentage of product is lost due to this mismatch 

(sdmisp,v). 

∑ 𝑃𝑓𝑎𝑟𝑚
𝑝,𝑣,𝑡

𝑝

= ∑ 𝑊𝑜𝑢𝑡2
𝑣,𝑝,𝑠,𝑡

𝑝∈𝑟𝑎𝑤(𝑝)

× 𝑠𝑑𝑚𝑖𝑠𝑝,𝑣      ∀𝑣

∈ 𝑉𝑠𝑢𝑝 ∧ 𝑝 ∈ 𝑃𝑟𝑎𝑤 ∧ 𝑡 ∈ 𝑇 

 ( 37 ) 

Equation 38 agglomerates all sources of waste in farms to 

obtain the total spoiled quantity in a given time period (SQp,v,t), 

including losses in storage due to product perishability. Finally, 

Equation 39 performs an inventory balance for suppliers. 
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∑ 𝑆𝑄𝑝,𝑣,𝑡

𝑝∈𝑟𝑎𝑤(𝑝)

= ∑ (𝑊𝑜𝑢𝑡1
𝑣,𝑝,𝑠,𝑡 × 𝑖𝑚𝑤𝑓𝑝,𝑣)

𝑝∈𝑟𝑎𝑤(𝑝)

+ ∑ 𝑃𝑓𝑎𝑟𝑚
𝑝,𝑣,𝑡

𝑝

+ ∑ (𝐼𝑁𝑉𝑣,𝑝,𝑠,𝑡 × 𝑙𝑜𝑠𝑡𝑠𝑓𝑝,𝑣,𝑡)

𝑝∈𝑟𝑎𝑤(𝑝)

      ∀𝑣

∈ 𝑉𝑠𝑢𝑝 ∧ 𝑝 ∈ 𝑃𝑟𝑎𝑤 ∧ (𝑠, 𝑡) ∈ 𝑆 

 ( 38 ) 

∑ 𝑃𝑈𝑣,𝑤,𝑝,𝑠,𝑡

𝑤,𝑝

+ ∑ 𝑊𝑜𝑢𝑡1
𝑣,𝑝,𝑠,𝑡

𝑝∈𝑟𝑎𝑤(𝑝)

+ ∑ 𝑄𝑃𝐿𝑤,𝑣,𝑝,𝑠,𝑡

(𝑤,𝑝)∈𝑓𝑙𝑜𝑤(𝑤,𝑣)

= ∑ 𝑄𝑃𝐿𝑣,𝑤,𝑝,𝑠,𝑡

(𝑤,𝑝)∈𝑓𝑙𝑜𝑤(𝑣,𝑤)

+ ∑ 𝑆𝑄𝑝,𝑣,𝑡

𝑝∈𝑟𝑎𝑤(𝑝)

      ∀𝑣 ∈ 𝑉𝑠𝑢𝑝 ∧ 𝑝

∈ 𝑃𝑟𝑎𝑤 ∧ (𝑠, 𝑡) ∈ 𝑆 

 ( 39 ) 

One final constraint was established to model the 

functioning of reprocessing facilities. In real scenarios it is never 

possible to fully reprocess the waste generated alongside SCs 

and, consequently, only a certain fraction of the waste which 

reaches reprocessing facilities should generate new 

commercially-interesting products. This fraction is here 

incorporated as reprofp,v (the fraction of product p which can be 

reprocessed at entity v). Equation 40 defines the total amount of 

new product generated by reprocessors (Wout
i,v,p,s,t) as a function 

of the waste input (Win
i,v,p,s,t) taking into account both the raw 

material requirements necessary to produce the new product 

(qrmatp,p’) and reprofp,v. 

𝑊𝑖𝑛
𝑖,𝑣,𝑢,𝑠,𝑡 × 𝑟𝑒𝑝𝑟𝑜𝑓𝑣,𝑢 = ∑ (𝑊𝑜𝑢𝑡

𝑖,𝑣,𝑝,𝑠,𝑡 × 𝑞𝑟𝑚𝑎𝑡𝑢,𝑝)

𝑝∈𝑟𝑎𝑤(𝑝)

      ∀𝑖

∈ 𝐼𝑟𝑒𝑝 ∧ 𝑣 ∈ 𝑉𝑟𝑒𝑝 ∧ 𝑝 ∈ 𝑃𝑓𝑖𝑛 ∧ 𝑢 ∈ 𝑃𝑤𝑎𝑠 ∧ (𝑠, 𝑡)

∈ 𝑆 

 ( 40 ) 

5. Case study 

The case study here described is based on that first published 

by Jonkman et al. (2017) and later revisited by Jonkman et al. 

(2018). The case study was divided in three different scenarios, 

all with specific changes meant to be addressed comparatively 

to assess the applicability of the model to a realistic context. The 

different scenarios are structured as follows: 

• Case A: the expansion of an existing AFSC is 

considered, in which storage is allowed solely in 

warehouses, and under supply and demand 

uncertainty; 

• Case B: the expansion of the same AFSC is 

considered, but storage is allowed in every echelon, 

and under supply and demand uncertainty: 

• Case C: the expansion of the same AFSC is 

considered, in which storage is allowed in every 

echelon, under supply and demand uncertainty, and 

including a reprocessing echelon where reverse 

logistics operations are allowed. 

The original papers focused on the redesign and expansion 

of a sugar beet processing AFSC in the Netherlands, stemming 

from an expected rise in demand due to changing European 

legislation. The SC includes two processing facilities (factories), 

located in Dinteloord (F1) and Vierverlaten (F2), and two 

potential processing facilities, one equipped with conventional 

technology, located in Puttershoek (F3), and one with a small 

scale biorefinery technology, located in Roosendaal (F4). The 

processing echelon is served by 43 suppliers (S1-S43), each 

with 1000 ha allocated to the plantation of sugar beet. The 

distribution echelon includes 4 facilities, located in Rotterdam 

(W1), Eindhoven (W2), Drachten (W3), and Apeldoorn (W4), and 

serves a total of 17 markets (M1-M17). For the third scenario, the 

reprocessing echelon corresponds to facilities F1, F2, and 

eventually F3, in which reprocessing technologies are installed. 

The locations of these facilities are depicted in Figure 3. 

 

Figure 3 - Location of the facilities within the sugar beet SC. Suppliers 
are marked in blue, existing processors in red, the potential 

conventional processor in green, the potential biorefinery processor in 
purple, warehouses/distributors in brown, and markets/retailers in 

orange. 

The SC uses sugar beet (p1) and beet leaves (p2) as raw 

materials, originating in the supplying echelon. Each supplier has 

a typical sugar beet yield of 80 ton/ha in the first time period 

(Jonkman et al. 2018) and a beet leaves yield of 30 ton/ha in the 

first time period (assumed for this work). Alongside the SC the 

two raw materials are processed into white sugar (p3), raw sugar 

(p4), ethanol (p5), biogas (p6), molasses (p7), beet pulp (p8), 

lime fertiliser (p9), and tare soil (p10). In Case C, tare can be sold 

to end consumers or sent to the reprocessing echelon, where it 

can be used as a raw material to produce other agri-products 

(p11). The processing echelon is initially equipped with a 

conventional processing technology (i1) which converts sugar 

beet into white sugar, generating lime fertiliser, beet pulp, 

molasses, and tare soil as by-products. However, a small scale 

biorefinery technology (i2) can also be implemented, whereby 

sugar beet and beet leaves are converted into raw sugar, 

generating ethanol, biogas, and tare soil as by-products. 

Additionally, the raw sugar can be sold as is or converted into 

white sugar and molasses via a sugar refining technology (i3). 

Finally, in Case C, an additional technology (i4) is installed, which 

accounts for the reprocessing of tare soil into other agri-products. 

The product inputs and outputs for all four technologies are 

depicted in Figure 4. 

Figure 4 – Product inputs and outputs 

All remaining data used to describe the case study can be 

found in the dissertation accompanying this document(Cruz and 
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Barbosa-Povoa 2018), which should be consulted for additional 

details. 

6. Results and discussion 

ENPVs of EUR 3074961.95, 3080248.23, and 4053404.26 were 

obtained for Cases A, B, and C, respectively. As can be seen 

from the presentation of the three cases, each case is similar to 

the last, except from additional features which would, in theory, 

improve the sustainability performance of the SC to an agri-food 

context. Naturally, this leads to an increase in the observed 

ENPV. The economic performance between Cases A and B is 

not remarkably different, as the added storage capacity 

throughout the SC can help prevent product wastage, but only 

up to a certain level, as product perishability prevents keeping 

high inventory levels. Still, as can be seen, this added storage 

capacity does impact the economic performance positively, even 

if not in a striking manner. However, the same does not hold true 

for Case C, in which a considerably higher economic 

performance is achieved due to the additional sales unlocked by 

the existence of reverse logistics. 

Table 1 – Results for major economic variables for Case A 

Variable Value (EUR) 

Fixed capital investment (t1) 13,981,000.00 

Capital investment (t2) 437,325.00 

Capital investment (t3) 0.00 

Expected net earnings (t1) 6,291,700.00 

Expected net earnings (t2) 6,972,600.00 

Expected net earnings (t3) 7,032,200.00 

Depreciation costs per time period 3,728,300.00 

 

Table 2 – Results for major economic variables for Case B 

Variable Value (EUR) 

Fixed capital investment (t1) 13,996,000.00 

Capital investment (t2) 453,705.00 

Capital investment (t3) 0.00 

Expected net earnings (t1) 6,293,600.00 

Expected net earnings (t2) 6,975,400.00 

Expected net earnings (t3) 7,035,100.00 

Depreciation costs per time period 3,728,600.00 

 

Table 3 – Results for major economic variables for Case C 

Variable Value (EUR) 

Fixed capital investment (t1) 14,882,000.00 

Capital investment (t2) 455,240.50 

Capital investment (t3) 0.00 

Expected net earnings (t1) 6,994,300.00 

Expected net earnings (t2) 7,744,200.00 

Expected net earnings (t3) 7,809,900.00 

Depreciation costs per time period 3,968,600.00 
 

As can be seen from Tables 1, 2, and 3, the economic 

performance of the model improves with the addition of flexible 

storage strategies and reverse logistics operations. In fact, the 

addition of reverse logistics does provide a very meaningful 

increase in the maximum registered ENPV, a finding which goes 

well in line with what is seen in the literature review. The 

appropriate response to the subsequent additions of 

characteristics also translates the correct behaviour of the model 

when addressing the AFSC context, one of the desired goals of 

this work. 

It can also be seen that the capital investments increase 

from one case to the next, as the addition of flexible storage 

capacity and one entire reprocessing echelon do come at a cost. 

However, and as previously mentioned, the additional 

investment does bear significant economic compensation. 

It is interesting to note that the model behaves similarly for 

all three cases in terms of storage capacity. In all cases, a 

capacity expansion of 50 tons/year is registered for the first and 

second time periods for all warehouses, as this expansion was 

sufficient to fulfil storage requirements. In cases B and C, four of 

the non-warehouse entities also undergo 2 ton/year capacity 

expansions in the first and second time periods. 

As far as technology is concerned, it should be highlighted 

that the model chooses to operate processing capacity increases 

in already-existing factories rather than opening facility F3, as 

this approach minimises investment costs. Contrasting, the 

alternative biorefinery configuration is indeed installed in facility 

F4 (in all cases) to satisfy demand for products not generated by 

the standard technology alternative. 

Apart from the technologic and storage-related results, it is 

important to recognise how the improved economic performance 

of the model impacts customer service, and, most specifically, 

the percentage of unmet demand. The unmet demand is 

important for two major reasons. Firstly, the existence of unmet 

demand implies a potential source of revenue is not being 

utilised, which in turn lowers the economic performance of the 

SC as a whole. Secondly, the unmet demand can also be utilised 

to infer on the perceived customer service of the SC to the client. 

As customer orders are not fully complied with, the more likely it 

is for that customer to lose trust in the SC (or a part of its actors) 

and search for other business opportunities, negatively 

impacting the SCs’ sources of revenue. As such, the lower the 

percentage of unmet demand, the better. Table 4 summarises 

the percentages of unmet demand for the three scenarios. 

Table 4 – Percentage of unmet demand 

Variable 
Scenario 

Case A Case B Case C 

Unmet demand (%) 9.80 7.60 6.50 

 

Before further analysis, it should be noted that a minimum 

percentage of demand satisfaction of 90% is imposed to the 

model as a way of ensuring a minimum acceptable level is 

achieved at all times. It can be seen that in Case A the minimum 

percentage is barely achieved (90.20% demand satisfaction). An 

increase in demand satisfaction is registered between Cases A 

and B, as the additional scattered storage capacity in Case B 

reduces waste (Table 5) and improves demand fulfilment. 

Finally, an additional increase in demand satisfaction is seen 

between Cases B and C, as the reverse logistics activities 

provide further waste reduction and generate resources that can 

be applied to other productive activities, thus positively impacting 

the available quantities for sale. Again, the unmet demand 

reduction further consolidates the beneficial impact of the 

successive improvements made to the SC and tested via Cases 

A, B, and C. 

As mentioned in the literature review, reverse logistics 

operations are seen as an effective way of tackling 

environmental sustainability concerns, as the transformation of 

otherwise waste products into commercially-viable goods 

reduces waste and increases the levels of stock available for 

sale. To evaluate this situation, Table 5 displays the costs of 

disposal obtained for each scenario. 
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Table 5 – Waste disposal costs 

Variable 
Scenario 

Case A Case B Case C 

Waste disposal 

cost (EUR) 
128,123.41 95,265.41 40,943.48 

 

The decreasing waste disposal costs go well in line with the 

notion that each scenario improves on the previous. Case B 

includes more flexible and readily-available storage capacity, 

thus better addressing perishability and reducing waste. 

However, a considerably higher difference exists between Case 

C and the other cases, as reverse logistics activities considerably 

reduce the final waste, which cannot be subject to reprocessing. 

Finally, when addressing optimisation problems, the 

complexity of the modelling approach is worth studying, as the 

increased complexity often leads to exponentially higher 

execution times (Table 6). 

Table 6 – Model statistics for each scenario 

Scenario 
# single 

equations 

# single 

variables 

# discrete 

variables 

Execution 

time (s) 

Case A 94,125 2,303,749 3,921 739.34 

Case B 111,397 2,439,415 3,921 1,147.12 

Case C 122,928 2,767,073 4,161 2,478.45 

 

As can be seen, the added features of each scenario 

contribute to the successive increase in complexity of the 

modelled case.  

7. Conclusions 

In the present work a quantitative model is proposed to 

support the design and planning of AFSCs via an optimisation 

approach, focused on the strategic and tactical decision levels. 

A MILP strategy is developed, and the exercise of model creation 

derives from the conduction of an extensive systematic review of 

the literature, in which a set of literature gaps are thoroughly 

identified and discussed. The proposed model serves as a solid 

step towards solving the knowledge gaps, thus providing an 

additional tool based on which future work can be conducted. 

The results discussed in Section 6 confirm the positive 

response of the model towards the AFSC scenario translated by 

the case study. As such, it is possible to affirm that the model 

proposed herein serves as an improved modelling tool for the 

specific context of AFSCs, in which literature has been 

documented as scarce (please refer to Section 2). This new 

improved approach can then serve two major objectives. Firstly, 

it directly targets existing knowledge gaps. Secondly, it highlights 

other limitations and lack of research on the specific AFSC 

context, stimulating other researchers to build upon these 

findings with further investigative work. Despite providing several 

improvements when compared to non AFSC-specific models, 

the current model can still be subject to several improvements. 

At first, it should be noted that the model here developed 

incorporates one single economic objective, a trait which fails to 

meet current triple bottom line optimisation concerns. As such, 

the addition of an environmental objective could greatly build 

upon the positive impact of the model. Secondly, more attention 

can also be given to the stochastic scenarios tree used to model 

uncertainty. The proposed scenarios tree seems appropriate to 

the modelled context, but the application of a larger set of 

possible scenarios could help improve on the model’s realism. 

It is important to note that both multi-objective optimisation 

and a wider set of scenarios take a considerable toll on 

computational requirements and, depending on the scope of the 

study, optimal solutions may hardly be available. In fact, the 

usage of optimisation approaches to address such complex 

problems usually pairs with the exponential increase of the 

execution time, which may ascend to weeks or more. In the light 

of this limitation, perhaps simulation approaches may be of value 

(hybrid approaches). Apart from simulation strategies, the 

combination of optimisation approaches with heuristics can also 

be of interest when attempting to solve complexity problems. 

To conclude, the current model contributes to the exercise 

of adapting existing SC management tools to the very unique 

AFSC context. The research effort produced satisfying results, 

as the model responded positively and consistently to the various 

scenarios. As such, a research gap was addressed, and the work 

here developed can serve as solid ground upon which future 

research can be conducted. 
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